If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+14p-17=0
a = 1; b = 14; c = -17;
Δ = b2-4ac
Δ = 142-4·1·(-17)
Δ = 264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{264}=\sqrt{4*66}=\sqrt{4}*\sqrt{66}=2\sqrt{66}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{66}}{2*1}=\frac{-14-2\sqrt{66}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{66}}{2*1}=\frac{-14+2\sqrt{66}}{2} $
| -3x-2(3x+4)-4=8-4x | | 1/2x+1/2x+8=2x+10 | | 6.2g+8=2.2g+32 | | 20+11x=14+15x | | 2x-7=9x+7 | | 9x+4x+12=77 | | -9(2x+8)+30=-18x-42 | | z2+7z-8=0 | | z2+7z-8=20 | | -8-4x^2=-204 | | 10m^2-5m=-3 | | 22÷7×36=k | | 2m+60=-6m | | 2x+20=4x-70=180 | | -5(x+3)-4=5-13x | | 195=10x-5 | | x3=12. | | {64/7}^5{64/7}^x={4/3}^18 | | 2/6b+3=2/9 | | 2(2-3x)-x=12-3x | | 1/3=12/8a-29 | | 2(x+3)-10=5x-6 | | -3(x-11)=-60 | | 23+3x=41 | | 3+8x=12x-1 | | 1x=25 | | 2x+25=11/5x=20 | | 36=10m-4 | | 4x=2(x-7) | | 36=10m=4 | | 8-w=2w-2 | | 2+6x=9x+8 |